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In Situ Measurement of Ground Thermal Conductivity: The
Dutch Perspective

Abstract

Determination of the ground’s thermal conductivity is a significant challenge facing designers
of Ground Source Heat Pump (GSHP) systems applied in commercial buildings. The ground heat
exchanger size and cost are highly dependent on the ground thermal properties. In order to be able to
predict ground thermal properties, an experimental apparatus has been built capable of imposing a
heat injection or heat extraction pulse on a test borehole, and measuring its temperature response.
Analysis of a detailed in situ test using a line source approach and bootstrap uncertainty analysis is
presented. Results are compared with a “traditional estimate” based on a detailed geological
description and with results of laboratory measurements. These results are also compared to those

determined using parameter estimation in conjunction with a two-dimensional finite volume model.

Introduction

This paper describes an in situ test facility to measure ground thermal properties. In
contrast to previously described facilities, this one allows both heat injection as well
as heat extraction using realistic temperature ranges. The test rig has been used to
determine the thermal characteristics of several sites, using both energy injection and
extraction, leading to improved and more confident designs. In practice, the test rig
provides a reliable and robust method of estimating ground thermal properties. The
test apparatus, built into a shipping container, is sufficiently mobile and can be
operated without supervision. The power needed to run the test facility can either be
obtained from the power grid or from a (low noise emission) generator. To allow
remote monitoring, a telemetry system has been developed.

We will discuss results of an extensive test, including a high-resolution time series of
experimental data, detailed geological descriptions and cone penetration tests,
additional temperature measurements made in observation wells and independent
measurements of thermal conductivity. Several caveats of the method, as well as
possible solutions, will be presented.

The ground thermal properties are among the most critical parameters in ground heat
exchanger design, and among the most difficult to quantify with sufficient accuracy or
confidence. Methods for estimating the thermal properties of the ground include using
values from literature, conducting laboratory experiments on soil/rock samples and
performing in situ tests.

Using literature values requires the least effort, but the range of thermal conductivity
values reported in literature is often quite large, due to the fact that local
circumstances have a big influence. Moreover, these general values for specific types



of soil/rock need to be translated to a value representative of the whole soil profile. A
prudent design will use the lower values to ensure proper thermal operation of the
system, but resulting in a (possibly not competitive) costly design.

An alternative to the use of literature values is determining, in the laboratory, the
thermal characteristics of samples obtained from the profile. The drawback of this
method is that only individual samples are analysed, which still need to be translated
to a representative value for the entire profile. Moreover, only relatively small
volumes are tested and inhomogeneities occurring at larger spatial scales are not
incorporated. Also any disturbance of the sample during sampling or storage will
affect the results. Finally, both methods do not provide any direct information on the
influence of groundwater flow on the thermal properties of subsurface on the site.

In situ tests for estimating the thermal characteristics of a ground loop — borehole
system have been developed by others and ourselves (Austin, 1998; Austin et al.
2000; Gehlin, 1998; van Gelder et al, 1999; Witte et al 2000). Using an in situ test is
attractive as it provides information on the thermal conductivity and volumetric heat
capacity of a considerable volume of the specific soil profile, under realistic
conditions and taking into account the actual borehole — ground loop configuration.
Apart from information on the ground-thermal properties, the testing provides crucial
information regarding the actual drilling conditions on the site and, moreover, makes
it possible to accurately predict project feasibility (both from an energy and economic
point of view). Of course, the in situ test presents a number of specific problems as
well. These mainly have to do with the influence of outside perturbations, the length
of testing required (very long when compared to laboratory experiments) and the
limitation of current analysis methodology.

In this paper, a comparison of different analysis methods will be presented.
Moreover, we will discuss some aspects of the analysis procedure of the in situ test
data, using additional information on temperature development in and near the
borehole.

Background and analysis methods

The thermal conductivity of a material has to be inferred from the relation between
energy flux and temperature. The In situ tests for estimating ground thermal
conductivity impose a pulse of known and fixed energy flux on the borehole, and
measure the resulting temperature response. The response test described here operates
by heating or cooling the circulation medium (using a reversible heat pump). During
the experiment, the volume flow as well as the temperature difference between inlet
and outlet are held constant, allowing energy fluxes (heat extraction or heat injection)
of between 50 and 2000 watts (170-6800 Btu/hr). Flow, temperature and several other
test parameters are logged during the experiment at specific time intervals.

Several models for inferring the thermal properties from such a dataset are available.
These models, all based on Fourier’s law of heat conduction, include the analytical
line source model (Kelvin 1882, Ingersoll et al. 1954) and the cylindrical source
model (Carslaw and Jaeger 1946), and several numerical models (e.g. Eskilson 1987;
Hellstrom 1989, 1991; Muraya 1995; Shonder and Beck, 1999;Yavuzturk, et al.



1999). In this paper, we will mainly focus on the line source model, which is the most
widely used method at this time.

The data analysis is based on the theory describing the response of an infinite line
source model (Ingersoll and Plass, 1948; Mogeson, 1983). Although this model is a
simplification of the actual experiment, it can successfully be used to derive the
geothermal properties (e.g. Kavanaugh, 1984; Austin, 1998; Gehlin, 1998).

The model approximates the transient process of heat injection or extraction by:
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where:

7 : mass flow rate kg/s or Ibm/hr

Cp specific heat J/kgK or

Btu/lbm-R

Voe(TourTi) - energy injected / extracted W or Btu/hr

Ty : average temperature of circulation medium  °C or °F

Tour : far field temperature °Cor °F

k : ground thermal conductivity W/mK or Btu/hr

ft

H : borehole length m or ft

Ry : borehole resistance K/(W/m) or
R/(Btu/hr/ft)

Y : Eulers constant -

t : time s or hr

7o : borehole radius m or ft

az : thermal diffusivity («/pcp,, where p is the density) m?’/s or

ft*/hr

This formula can be used as an approximation of the transient process under the
condition that:

2
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a
The thermal conductivity can be estimated from the data by:
k= _(mcp( (mt_Tm)) 3
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Where the parameter [s] equals the slope of a linear regression of temperature with
logarithmic time. When k has been estimated, the borehole resistance Ry can be
calculated using (1).

When applying this model several questions arise. The first question, how much of the
beginning of the data series to ignore, deals with the fact that the first part of the data
series only represents the response of the borehole itself. Secondly, we ask how long



the experiment needs to be run, and at what time interval the data needs to be
collected. In principle the amount of time needs to be larger than the condition
imposed by eq. (2), but this value can only be calculated with an initial guess of the
thermal diffusivity, and can be evaluated afterwards using the results from the
experiment. Long series with a high time resolution may lead to cumbersome data
processing, while too short series or series with a low time resolution may result in
biased estimates or estimates with higher standard deviations. The third question is
related to the fact that outside perturbations, as imposed by the diurnal temperature
cycle, have a large influence on the result of the estimate of thermal conductivity (see
e.g. Austin, 1998). Not only do these perturbations influence the resulting estimate
due to the exact data period that has been selected for analysis, but they may also
introduce a bias when the total flux is not balanced, a situation that may arise during a
heat extraction experiment in summer when the temperature difference between
atmosphere and circulation medium is small at night but large during the day. In
winter the reverse situation may occur. This influence can be minimised by selecting
appropriate experiment parameters (mainly keeping the medium temperature as close
as possible to the outside temperature and imposing a relatively large energy flux),
and proper insulation of the apparatus and connecting pipe work, but nevertheless is a
point worth considering.

Austin (1998) addressed the first two questions by calculating the conductivity using
different starting points and then including more data in a stepwise fashion. The
resulting thermal conductivity estimates can be plotted with time to observe the
convergence speed and value. We have noted in several experiments that this method
is quite sensitive to the starting point and window size (the amount of data that is
included at each step). The third problem, of cyclicity in the temperature response, is
harder to address. The effect can be visualised by calculating the A for a certain time-
window that is shifted along the series. Again the results are very sensitive to the
starting point and time window selected, in practice any value of k& can be obtained.
Moreover, it should be noted that the linear regression method makes certain
assumptions about the distribution of the data and errors. One of the assumptions is
that the errors (the residuals) are uncorrelated, while the residuals of typical In situ
response series have very high autocorrelations. As a result, the regression
coefficients obtained cannot be considered stable. Instead a weighted regression can
be used, but it is quite difficult to obtain a vector of appropriate weights.

We have applied a bootstrap method to the data (Effron and Tibshirani, 1993), using
Monte Carlo simulation. This procedure draws observation points from the complete
set of observations in a random fashion, after which the regression coefficients are
calculated. Subsequently a new sample is drawn, and new regression coefficients are
calculated. This procedure is repeated a number of times and the variation in the
regression coefficients obtained from all these samples yields an estimate of the
confidence interval of the regression coefficients and the influence of individual data
points. Bootstrap regression coefficients were calculated using different parts of the
data series and using different bootstrap sample sizes. The resulting regression
coefficients can be statistically analysed to estimate the stability and standard
deviation of the thermal conductivity values obtained.

During a typical experiment, only temperatures of the circulation medium are
measured. At one location, we have conducted an experiment which includes



temperatures measured in the borehole itself, and in an observation well located 0.75
meters (2.5 ft) from the borehole. Temperatures were regularly logged at a depth of 15
meters (49 ft), and each day a complete temperature profile was made. This data
augments the data from the experiment, and may be used to evaluate the possible
differences in fluxes over the soil profile. Also, the time at which the temperature
front reaches the second observation well can be used to check the results of several
models.

During installation of the observation well a detailed description of the profile was
made. Samples from the profile were collected in sampling tubes, which were
immediately capped to prevent changes in moisture content. The samples were sent to
the laboratory for analysis of the thermal conductivity using a none-steady state probe
method (van Haneghem 1981). Samples were also analysed on particle size and
organic content. A cone penetration test on the entire soil column was also carried out.

Experimental Apparatus

The experimental apparatus is similar, in many respects, to those described by Austin
(1998) and Gehlin (1998). The main difference between the systems is that the
experimental apparatus described here does not use electrical power to directly heat
the circulation fluid, but maintains a fixed temperature difference between the inlet
and outlet. Due to this approach, the energy-rate is not influenced by variations in the
power supply during the experiment. Also, whereas those systems could only inject
heat into the ground, this system can either inject heat or extract heat. This is made
possible with a reversible water-to-air heat pump that can either heat or cool the
circulating fluid. Additional components of the system include a heat pump, a 0.5 m’
(17.66 ft) buffer tank, two circulation pumps (one that circulates fluid between the
heat pump and the buffer tank, and one that circulates fluid between the buffer tank
and the ground loop), a three-way regulating valve, a flow sensor and several
temperature sensors. Temperature is measured in the buffer tank, in the fluid entering
the ground loop and in the fluid returning from the ground loop. The system is
configured as shown in Figure 1.
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Figure 1 Experimental Apparatus

The heat pump generates a supply of warm or cold water. Using the temperature
sensor in the buffer tank and the entering ground loop temperature, a specified
difference is maintained. The buffer tank is therefore always between 4 - 6°C (7-11°F)
warmer or colder than the entering ground loop temperature. Other temperature
difference setpoints may be chosen.

This supply of water is used to achieve a certain temperature difference between the
entering and return ground loop temperature, e.g. 2.5°C (4.5°F). This temperature
difference is achieved by mixing in more or less water from the buffer vessel, by the
regulating valve. The amount of energy injected or extracted from the ground is a
function of the flow and temperature difference selected.

When the measured temperature difference (between entering and return sensor) is not
equal to the selected temperature difference, this error is used to adjust the regulating
valve. When, for instance, the set AT is 2.5 and the measured AT is 2.3 the regulating
valve will be adjusted until the measured AT is again 2.5.

The accuracy of the experimental apparatus is related to two types of uncertainty:
random measurement errors and systematic measurement errors. For this apparatus,
the random measurement error is calculated for the experiment using the bootstrap
method (Efron and Tibshirani 1993). Although it is calculated for each test, a typical
value is +1%.

The uncertainty due to possible systematic measurement errors may be estimated by
considering the uncertainty in each of the measurements. The rated accuracy of the



temperature sensors is £0.1°C (£0.2°F) and, as two sensors are involved in the actual
measurement, the two errors may be added in quadrature (Taylor 1997) to give an
error of +0.14°C (+0.3°F). However, the temperature sensors are calibrated, and
measure equal temperatures when immersed in a constant temperature bath; therefore,
the actual uncertainty is probably lower. (A reasonable estimate might be made by
inferring from the calibration that the actual uncertainty in each sensor is +0.05°C
(£0.1°F), and adding the uncertainties in quadrature to give an uncertainty in the AT
measurement of £0.07°C (+0.1°F).)

The other sensor involved in establishing the energy rate is the flow sensor. This
sensor has a rated accuracy of £0.3 to 0.9 % at flow rates below 1.5 m*/hr (6.6 GPM)
and of +£0.2% above.

Of course, the relative error depends on the AT and flow rate selected. Using small
values (low power rates) will give a higher relative error. For the experiment
described below, the average flow rate was 0.79 m’/hr (3.5 gpm), with a random
measurement error of + 0.01 m’/hr (0.04 gpm) or £1.2%. The AT had an average
value of 1.3 °C (2.3°F) with a random measurement error of = 0.079 °C (0.14°F) or
+6%.

As discussed by Taylor (1997) there is no rigorously defensible procedure for
combining the uncertainties due to systematic measurement error and random
measurement error. A suggested method is to add the two in quadrature. For the AT
measurement, adding the uncertainty inferred from the calibration and the uncertainty
due to random measurement error gives a total estimated uncertainty of +8%.,
Likewise, adding the flow measurement uncertainties (systematic: +£0.4 %; random:
+1.2%) in quadrature gives a total estimated uncertainty of 1.3%. Then, the
uncertainty in the energy rate may be estimated by adding the uncertainty due to the
flow measurement and the uncertainty due to the temperature difference in
quadrature: +8.1 %. Austin, et al. (2000) have shown that the uncertainty in the
thermal conductivity estimate due to the uncertainty in the energy rate is the same.
Therefore, the theoretical error in the conductivity estimate may be assumed to be
approximately +8.1 %. For a more detailed uncertainty analysis, see Austin, et al.
(2000).

Results

A priori estimate of soil thermal conductivity

The traditional way of obtaining estimates of soil thermal conductivity is to ascertain
the different types of soil or rock in the profile. In this study, a detailed soil profile
description during the drilling was made. This profile was saturated from a depth of 1
m below surface level. This is shown in Table 1.



Table 1. Soil profile and traditional estimate of soil thermal characteristics (from 1 m below surface
level the soilprofile was saturated).

Texture Consolidation Conductivity (k), Volumetric heat
W/m-K (Btu/hr-ft-F) capacity(pc,)
Depth MJ/m’-K (Btu/fe-R)
min max avg min max avg
0 Pavement ~ ~ ~ ~ ~ ~
0-1 Sandy suppletion layer Mixed, low 111 1.25 1.2 ~ ~ 1.7
0.64) | (0.72) | (0.69) (25.32)
1-4 Fine grained sand, shells Low 0.58 1.75 1 1.23 2.12 1.8
034) | (1.01) | (058) | (18.32) | (31.57) | (26.81)
4-6 Peaty and clayey Medium 0.9 1.32 0.8 1.1 3.6 1.9
0.52) | (0.76) | (0.46) | (16.38) | (53.62) | (28.30)
6-13 Fine sand, silty clay with Medium ~ ~ 13 ~ ~ 23
organic matter (0.75) (34.26)
13-16 | Medium coarse sand with Medium 1.73 5.02 24 22 2.72 2.5
fine gravel (1.00) | (2.90) (1.39) | (32.77) | (40.51) | (37.24)
16 - 18 | Medium coarse sand with Medium 1.73 5.02 24 2.2 2.72 2.5
fine gravel (1.00) | (290) | (1.39) | (32.77) | (40.51) | (37.24)
18 -27 | Medium coarse sand with Layered, 1.73 5.02 24 2.2 2.72 2.5
medium coarse gravel Hich (1.00) | (2.90) | (1.39) [ (32.77) | (40.51) | (37.24)
g
27-29 | Fine sand, clayey Medium 1.34 4.8 1.8 1.9 2.6 23
078) | 277) | (1.04) | (2830) | (38.72) | (34.26)
29 -30 | Medium coarse sand with High 1.73 5.02 24 22 2.72 25
fine gravel (1.00) | (290) | (1.39) | (32.77) | (40.51) | (37.24)
30-31 | Fine sand with clay and silt | Medium 1.34 4.3 1.8 1.9 2.6 23
lenses 0.77) | 2.77) | (1.04) | (28.30) | (38.72) | (34.26)
31-35 | Medium coarse sand High 1.73 5.02 24 22 272 25
(1.00) | (2.90) | (1.39) | (32.77) | 40.51) | (37.29)
Weighted average 1.19 3.40 1.88 1.53 2.09 2.33
0.69) | (1.96) | (1.09) | (22.79) | (31.13) | (34.70)

To obtain more quantitative information on the different soil types a particle size
analysis was carried out on several samples, and a cone penetration test (giving
resistance and friction as a function of depth, indicating the state of compaction or
density of the different soil strata) was performed. Based on this detailed geological
information, “best values” were obtained from literature and a weighted average of
soil conductivity was calculated.

Two limitations of this method are evident: First, it is quite difficult to obtain typical
values for the different soil types at this level of detail. Especially when dealing with
mixed soil types or inclusions, such as clay lenses or gravel, selecting or even finding
appropriate values becomes quite problematic. The second problem is that the range
of values is quite large, soil conductivity is estimated to vary between 1.19 W/mK and
3.40 W/mK (0.69-1.96 Btu/hr-ft-F). As a prudent design will use a value near the
lower end of this range, the borehole length required will make the system very
costly.




Estimates of soil conductivity using the “non-steady state probe” method

From the soil profile nine samples were taken and analysed by the Applied Physics
group of the University of Wageningen. Depending on the structure of the sample,
measurements were carried out two or three times. Overall inaccuracy was determined
to be less than 5%. Results are presented in Table 2.

Table 2. Estimates of soil conductivity obtained with the non-steady state probe method.

e exture onductivi m- u/hr-ft-
Depth Text Conductivity (k) W/m-K (Btu/hr-ft-F
(meter) Sample
(fo)
1 2 3 Average
0.8 1 Sandy suppletion layer 2.155 2.375 2.265 (1.31)
(2.6) (1.24) (1.37)
14 Fine grained sand, shells 2.486 2.583 2.535 (1.46)
(4.6) 2 (144) | (1.49)
4 Peaty and clayey 1.143 1.127 1.128 1.135 (0.66)
(13.1) 4 0.66) | (065 | (0.65)
6 Fine sand, silty clay with organic 1.659 1.659 (0.96)
(19.7) 5 matter (0.96)
8 6 Fine sand, silty clay with organic 0.191
(26.2) matter (0.11)
10 Fine sand, silty clay with organic 1.165 1.016 1.091 (0.63)
(32.8) / matter 0.67) | (0.59)
14 Medium coarse sand with fine 2588 2.306 2587 2447 (1.41)
(45.9) 9 gravel (150) | (1.33) | (149
22 Medium coarse sand with medium 2.809 275 2.780 (1.61)
(72.2) " coarse gravel (1.62) (1.59)
30 13 Fine sand with clay and silt lenses 2.801 2.934 2.868 (1.66)
(98.4) (1.62) (1.69)
Average 2.097 (1.21)

One sample (6) yielded results an order of magnitude lower than the typical (and
expected) results; consequently, we did not include this sample in our analysis.
Obvious from the table are quite big differences in thermal conductivity between the
different samples, conductivity values ranging between 1.09 W/mK and 2.868 W/mK.
(0.63 Btu/hr-ft-F and 1.66 Btu/hr-ft-F).

In situ response test: line source model

In the 30-meter deep borehole a U-tube heat exchanger constructed of PN10 HDPE
pipe, 25 mm (1 in.) diameter was installed. The two legs of the U-tube were held
apart with 10 cm (4 in.) spacers. The borehole has a diameter of 0.25 m (0.82 ft), and
was backfilled using the soil material itself. A heat extraction experiment was carried
out with an energy flux of -1090 Watts (-3719 Btu/h) or -36.3 W/m(37.8 Btu/h-ft).
Data was logged at 1-minute intervals and the experiment duration was 265 hours.
Undisturbed ground temperature was 13.75 °C (56.8°F).

In addition to the data collected by the in situ apparatus, additional measurements
were made using two observation wells. These two observation wells (figure 2) were
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installed to a depth of 30 meters, one in the borehole itself and another one at a
distance Of 0.75 m., and consist of a PVC-casing with a diameter of 40 mm. The
observation well installed in the borehole is a screened well (filter length 2 meters, 28
- 30 meters depth), the observation well at 0.75 m consists of a closed standing
column well. Temperature measurements were made at 10 minute intervals at a depth
of 15 m (49.2 ft) below surface level, from an observation well in the heat exchanger
borehole itself and in an observation well located at 0.75 meters (2.5 ft) from the heat
exchanger. A complete temperature-depth profile was made daily.

borehole U-loop observation wells

0.25m
(101in.)

Figure 2. Borehole and loop configuration showing the two additional observation wells.

From the complete data series (figure 3) an average conductivity value of 2.1 £+ 0.02
W/mK (1.2 + 0.01 Btu/hr-ft-F) was calculated using the line source model. (Here, the
uncertainty is that due to random measurement error, as estimated by the bootstrap
method. Considering possible systematic measurement error, the estimate of thermal
conductivity may be given more precisely as of 2.1 + 0.2 W/mK (1.2 + 0.1 Btu/hr-ft-
F).) Calculating the conductivity during the first five hours (representing the borehole)
and during the period 5 to 265 (representing the ground proper) hours gives estimates
of thermal conductivity of 2.44 £ 0.03 W/mK (1.4 = 0.02 Btu/hr-ft-F) and 2.13 = 0.03
W/mK (1.2 + 0.02 Btu/hr-ft-F).
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Figure 4. Soil conductivity values calculated using different starting points and
extending the data series by adding data in a stepwise fashion in blocks of six

hours.

Careful examination of the fluid temperature curve presented in figure 3 shows
several small deviations from the ideal straight line, even when discounting the initial
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five hours of data. As there is some arbitrariness involved in exactly how much of the
initial data to ignore, and even small perturbations may affect the estimates of thermal
conductivity obtained (Austin, 1998) the thermal conductivity was calculated for
several series with different starting points and adding data by blocks of six hours.
When the resulting conductivity values are plotted as a function of data period (figure
4) these effects on the estimates can be evaluated (Austin, 1998).

Discarding at least the first three hours of data results in faster convergence of the
estimated conductivity. Remarkable is that the conductivity values estimated using
data up to 72 hours are about 1.95 W/mK (1.13 Btu/hr-ft-F), but that adding data after
72 hours shows increasing values for the estimates. The estimates stabilise again after
120 hours of data is added, at a value around 2.13 W/mK (1.23 Btu/hr-ft-F). Adding
data after 230 hours again leads to increasing estimates for soil conductivity.

To investigate the underlying cause of these effects atmospheric temperature data
from a nearby climate station were superimposed on the fluid medium temperatures

(figure 5).
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Figure 5. Atmospheric temperature data superimposed on the experimental average
fluid temperatures.

The atmospheric temperatures measured during the experiment run show a clear
correlation with the different data periods. During the first 72 hours the atmospheric
temperatures show a decreasing trend. During the period 72 to 120 hours,
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temperatures are relatively high. Lower atmospheric temperatures are evident during
the subsequent period up to 220 hours. Higher temperatures were recorded during the
final stage of the experiment.

Although the effects of the atmospheric temperature on the average fluid temperature
is very small (on the order of + 0.15 °C or +0.27°F) it affects the estimate of thermal
conductivity significantly.

The sensitivity of the estimates of thermal conductivity was further investigated by
bootstrapped regressions, for each of the time-periods with a different response. Using
the bootstrap regression coefficients, the sensitivity of the solution to individual data
points is quantified. The results are summarised in table 3.

With the exception of the periods 0 — 265 hours and 5 — 265 hours none of the
confidence regions overlap, indicating that each period yields significantly different
estimates of soil conductivity. Estimated conductivity during the period 72 — 120
hours (high atmospheric temperature) is relatively high, while the period 120 — 220
hours shows relatively low wvalues (low atmospheric temperature). A likely
explanation for this is that with higher atmospheric temperatures, excess heat is added
to the fluid outside of where the temperature measurements are made; this reduces the
actual heat extraction rate from the ground, giving a lower rate of temperature
decrease, and hence, a higher estimate of thermal conductivity.

Ultimately, the results should be compared to the non-steady state probe method, from
which a “best estimate” of 2.1+ 0.1 W/mK (1.2+0.1 Btu/hr-ft-F) was obtained. When
the uncertainty of + 8.1% is added to the line source predictions, the estimates for 0-
72 hrs, 5-72 hrs, 0-265 hrs, and 5-265 hours are all within the estimated experimental
uncertainty.
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Table 3. Bootstrap thermal conductivity values for several time periods, 100 bootstrap replicate
samples of 500 data points each were evaluated.

DATA RANGE k 95% conﬁdkence interval
(hour) Median Low high

0-5 (%:3(3)) 239 (138) 2.49 (1.44)

0.1667 - 5 (igg) 233 (135) 237 (137)

0-72 (1:?‘7‘) 1.94 (1.12) 2,02 (1.17)

5-72 (i:?f) 1.91 (1.10) 1.92 (1.11)

72-120 (%23) 2.80 (1.62) 2.90 (1.68)

120 - 220 (if)g) 174 (1.01) 179 (1.03)

0-265 (ié(l)) 2.08 (1.20) 2.13(123)

5-265 (ig) 2.11(1.22) 2.14(1.24)

In situ response test: Two dimensional finite volume model

As an alternative to the line source analysis, a parameter estimation procedure coupled
with a numerical model may be used to concurrently estimate soil and grout
conductivity and heat capacity (Yavuzturk, et al. 1999; Austin et al., 2000; Spitler, et
al. 2000). The advantage of using a numerical model over analytical models such as
the line source model is that the loop and borehole configuration are explicitly
modelled. Thereby it reduces uncertainties with respect to the simplifying
assumptions used in an analytical model.

We used the model described by Spitler, et al. (2000) to calculate the conductivities
for the same time periods of data as used in the bootstrap estimates. This model is
similar to the one described by Austin, et al. (2000), but a boundary-fitted coordinate
grid is used to model the borehole geometry. The results are summarized in table 4.
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Table 4. Soil and grout conductivity and thermal capacity estimated using a 2D finite volume
numerical model.

k soil k grout
W/m, K W/m, K
(Btu/hr-ft-F) | (Btu/hr-ft-F)

0-72 | 1.73(1.00) 3.81 (2.20)
5-72 | 1.93(L11) 243 (1.41)
72-120 | 2.58 (1.49) 1.28 (0.74)
120-220 | 2.39(1.38) 1.37(0.79)
0-265 | 2.02(1.17) 2.26(1.31)
5-265 | 2.08(1.20) 2.11(1.22)

DATA RANGE
(hour)

In comparing the results of the finite volume method to the line source analysis
method, it might first be noted that the conductivities predicted using the complete
data set or the complete data set, except for the first five hours, are very close (within
4%) of each other. Likewise, the results for the first 72 hours are almost identical
when the first five hours are ignored. For other data ranges, the results are more
disparate, although the finite volume method results are not expected to be meaningful
for cases where large numbers of hours are ignored, as in the 72-120 or 120-220
cases. (The line source method estimates the ground conductivity from the slope, and
can then estimate the grout conductivity sequentially. The finite volume, parameter-
estimation-based method estimates both conductivities simultaneously. Presumably,
ignoring significant numbers of hours reduces the likelihood that the two different
conductivities will be resolved correctly).

Likewise, comparing the results to the non-steady state probe method, the estimates
for 5-72 hrs, 0-265 hrs, and 5-265 hours are all within the estimated experimental
uncertainty. The results for 0-72 hours fall slightly below what could be explained
with the experimental uncertainty analysis. As described by Austin, et al. (2000)
there are other sources of uncertainty, such as uncertainty in the undisturbed ground
temperature and the numerical model that may account for this difference.

Figure 6 shows the temperatures predicted by the finite volume method, using the
thermal conductivities determined using the entire data set. The results match closely,
but it is noted that the finite volume method results vary at a relatively high frequency
compared to the experimental results. This is caused by the fact that the fluid
temperature measurements were recorded with one significant digit to the right of the
decimal place, and the heat transfer rate, being determined by the AT, fluctuates from
measurement to measurement. In this particular experiment, the AT was set to be
1.3°C (2.3°F), but it varied from 1.2°C (2.2°F) to 1.4°C (2.5°F). This variation in AT
results in a +7.7% variation in heat transfer rate, which in turn causes the temperatures
predicted by the finite volume method to fluctuate as shown in Figure 5. This has
little or no impact on the predicted conductivities, as the parameter estimation
methodology minimizes the sum of the least squares, causing the predicted
temperatures to match the actual temperatures as closely as possible. Still, using a
higher AT would result in less oscillation.
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Figure 6. Temperatures predicted by the 2D finite volume model and observed
temperatures.

Temperature measurements

As discussed above, temperatures were also measured in an observation well inside
the borehole and in an observation well 0.75 m (2.46 ft) from the borehole. The
temperature difference between the fluid and the borehole observation well decreases
during the first 28 hours. Afterwards the temperature difference remains stable at 4°C

(7.2°F). After 49 hours of operation, the first temperature decline is measured at 0.75
metres (2.46 ft).

The daily temperature profiles in the borehole observation well (figure 7) show a
different response at different depths. The depths up to 10 metres (33 ft) are relatively
colder than the depths between 15 (49 ft) and 25 metres (82 ft). This corresponds well
with the conductivity values measured in the laboratory, where higher conductivity
values were measured for thee depths between 15 (49 ft) and 25 metres (82 ft). The
higher conductivity results in higher energy fluxes, and therefore higher temperatures
and higher temperature differences between the measured borehole observation well
temperature and the fluid temperature.
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Figure 7. Temperatures profiles in the borehole observation well.

Conclusions and Recommendations

In this paper, we have presented several methods for obtaining estimates of soil
thermal parameters. Clearly, the traditional method can only be used under
circumstances where reliable, formation-specific, literature values are available, and
the location has a relatively homogenous (and well known) geology with little or no
groundwater flow. Even then, the effect of borehole and loop configuration cannot be
accounted for.

Using a non-steady state probe method on samples obtained by coring gives highly
accurate estimates of soil conductivity and soil heat capacity of individual samples.
The drawback of this procedure is that relatively small samples are analysed and that
again the hydrology, borehole and loop configuration are not accounted for.
Moreover, as the results on the individual samples have to be aggregated into an
overall average value for the borehole profile, the samples have to be highly
representative with regard to the different geological strata present. Therefore, this
method will only yield an acceptable estimate of ground thermal characteristics when
a sufficient number of undisturbed samples of good quality can be obtained through
coring, which will not always be possible in practice.

By applying the in situ response test, system and site specific values for soil thermal
parameters can be obtained. These include the geology, hydrology, borehole and
backfilling quality as well as loop configuration and positioning. In this paper, we
have presented a relatively detailed analysis of such a data set. Although some care
needs to be taken in selecting the appropriate experimental parameters and data period
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for analysis, quite accurate (only slightly lower accuracy than the laboratory method)
and reproducible estimates can be obtained.

The in situ response test can be used specifically to estimate appropriate values for
soil thermal characteristics. These measurements increase confidence in geothermal
modelling results and improve overall design quality. In practice, this could also
result in significant financial savings, as loop length may be reduced without affecting
the thermal design limits of the ground loop heat exchanger.

As shown in this study, the results of an in situ test can be adversely influenced by the
atmospheric conditions. This adverse influence can be mitigated by increased
insulation of the above-ground piping and by installing additional temperature sensors
in the borehole itself. As these sensors can be used to control the temperature
difference, the experiment should be much less influenced by outside conditions.
Accuracy of the measurements can further be increased by using a higher temperature
difference, as the relative error of the temperature sensors is the largest factor
influencing the error of the result. Finally, changes in viscosity of the circulation
medium with temperature may lead to a change in flow rate over the duration of an
experiment. To adjust for these changes in flow rate that could introduce a bias in the
results, the control system can be adapted so that not the temperature difference itself,
but a function of temperature difference and measured flow rate, i.e. the actual energy
flux, is kept constant. These improvements have now been incorporated into the in
situ response test apparatus described here, and are presently being evaluated.

The in situ response test has been used mainly to obtain accurate estimates of the
thermal characteristics of the ground. However, there are a number of other important
applications of such a test facility. In the design of a ground loop heat exchanger,
many decisions have to be made beforehand: drilling method and depth, type of loop
(concentric or U-loop), type of backfilling to use, etc. Many of these questions have
both a cost aspect and a thermal efficiency aspect. With a test facility, it becomes
possible to establish optimum drilling depth, for instance by creating a temperature-
depth profile indicating the relative contribution of the different soil-strata. The
performance of different loop-types and backfilling material, under specified
circumstances, can be evaluated and the possible influence of groundwater flow
directly ascertained. In this way, the total system design can be optimised both from
the point of view of thermal performance as well as from a cost perspective. Finally,
when building loads and duration of peak-load cycles are known, these can be
simulated on the ground-loop heat exchanger allowing some verification of the design
and anticipated thermal behaviour.

Other applications can be found in a posteriori evaluating an installed heat exchanger.
In one such case, where due to technical difficulties the heat exchanger was
significantly smaller than the original design prescribed, we simulated several peak
loads to establish the heat extraction that could be sustained during a specified period.
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